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Direct methods of phase determination have played an

important role in determining heavy-atom substructures from

difference amplitudes of native–derivative crystal pairs or

crystals containing anomalously scattering atoms. The minimal

principle-based Shake-and-Bake procedure is one of the most

successful direct methods for heavy-atom substructure

determination. The computer program SnB, which imple-

ments the Shake-and-Bake procedure and is part of the

protein structure-determination package BnP, has recently

been optimized for rapid and automated substructure

determination. Specifically, SnB has been upgraded with (i)

a newly developed statistical minimal function for higher

success rates, (ii) an optimal FFT grid size for dramatic cost-

effectiveness improvement, (iii) a dynamic figure of merit for

automatic substructure-solution detection and (iv) a strategy

of alternation of anomalous differences with isomorphous

dispersive differences for virtually guaranteed substructure

solution.
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1. Introduction

Macromolecular crystal structure determination has typically

been a two-step process. When diffraction data from multiple

chemically isomorphous or anomalously scattering crystals

(Green et al., 1954; Harker, 1956; Steitz, 1968) are available,

one first locates the positions of heavy atoms from difference

amplitudes arising from native–derivative crystal pairs or

anomalous scattering atoms and then completes the phasing of

the whole protein structure by using the heavy-atom

substructure as a bootstrap. Although both Patterson and

direct methods can effectively determine small substructures,

direct methods tend to be more efficient for large substructure

determinations.

Shake-and-Bake (DeTitta et al., 1994; Weeks et al., 1994;

Weeks & Miller, 1999) is a direct-methods procedure that

automatically and repetitively alternates reciprocal-space

phase refinement either by using the tangent formula (Karle &

Hauptman, 1956) or by reducing the value of the minimal

function (Debaerdemaeker & Woolfson, 1983) with comple-

mentary real-space density modification to impose physical

constraints. Shake-and-Bake belongs to the class of phasing

methods known as ‘multi-solution’ or ‘multi-trial’ procedures

(Germain & Woolfson, 1968). Multiple trial structures are

created by using a random-number generator to assign initial

coordinates and each trial is then subjected to the dual-space

refinement process. Potential solutions are identified on the

basis of minimal function values at the end of SnB refinement.

The complete algorithm has been described in detail in several

reviews (e.g. Weeks et al., 2001; Sheldrick et al., 2001).



Shake-and-Bake is a powerful procedure that is capable of

providing ab initio solutions for structures containing as many

as �2000 independent non-H atoms (Frazão et al., 1999)

provided that accurate diffraction data have been measured to

a resolution of 1.2 Å or better and several moderately heavy

atoms (e.g. sulfur or iron) are present. It has also provided

solutions for heavy-atom protein substructures containing as

many as 160 Se atoms (von Delft et al., 2003) provided that

anomalous difference data have been measured to �3.0 Å.

The Shake-and-Bake algorithm has been implemented in the

computer programs SnB (Miller et al., 1994; Weeks & Miller,

1999) and BnP (Weeks et al., 2002). It has also been imple-

mented independently in the program SHELXD (Sheldrick,

1998; Schneider & Sheldrick, 2002).

In order to meet the high-throughput requirements of

structural genomics projects, every aspect of the protein-

phasing process, including substructure determination, has to

be optimized. The main goal of this paper is to minimize the

expected time to solution. This goal can be realised either by

increasing the percentage of successful trial structures or by

reducing the amount of computing time required for each

trial. In the following sections, we will detail methods and

strategies to increase the success rate by introducing a new

type of minimal function (x3), by switching from the use of

anomalous differences to isomorphous dispersive differences

(x4), by decreasing running time via an optimized FFT grid

(x5) and by automatic detection of the occurrence of the first

solution (x6).

2. Materials and methods

The relative merits of different computational procedures

have been determined by a postmortem analysis of different

Shake-and-Bake variants using test data for 19 known protein

substructures ranging in size from five to 70 Se sites in the

asymmetric unit. Basic information such as the Protein Data

Bank (PDB) code, the number of Se atoms in the asymmetric

unit (N), the space group and the data resolution for these

substructures is listed in Table 1. In each case three wave-

lengths of anomalous dispersion data were available and the

DREAR program (Blessing & Smith, 1999) was used to

calculate the normalized difference structure-factor magni-

tudes |E�| for both peak-wavelength anomalous difference

data (PKano) and dispersive data (IPiso) related to the differ-

ences between the inflection-point and high-energy remote

wavelengths. For comparison, normalized structure-factor

magnitudes |EA| were also computed for the substructures.

Estimates of the MAD |FA| values (Karle, 1989; Hendrickson,

1991) were generated using the SHELXC program and

normalized using a version of SHELXD modified to output

|EA| values.

Each set of normalized magnitudes was truncated to 3 Å for

substructure determination; the remaining reflections were

sorted in decreasing order according to their |E�| or |EA|

values and the top 30N reflections were then selected to

generate the 300N most reliable three-phase structure invar-

iants. Samples of randomly positioned N-atom trial structures

were generated for each set of test data and subjected to 2N

cycles of SnB dual-space refinement using one of the methods

described in x3. Following refinement, the mean phase error

(MPE) relative to the known substructure was determined for

each trial structure and trials with MPE values less than 30�

were counted as solutions. In all cases, low MPE values were

perfectly correlated with low values of the minimal function.

The success rate, defined as the percentage of trial struc-

tures that converge to solution at the end of a fixed number of

Shake-and-Bake cycles, provides an important indication of

the quality of a particular computational method. However,

this measurement does not take into account the computa-

tional effort (running time) needed to produce the solutions.

The relative efficiency of different refinement methods can be

compared on the basis of the cost-effectiveness CE,

CE ¼
3600S

TCt
; ð1Þ

where T is the number of trial structures, C is the number of

cycles per trial structure, S is the number of solutions

produced by T such trials and t is the running time (in seconds)

for one cycle of one trial. CE has units of solutions per hour

and the expected time required to achieve the first solution is

the reciprocal of CE.

3. Success-rate improvement: refinement method

If EH = |EH|exp(i’H) are the normalized structure factors of a

crystal structure, then the so-called crystallographic phase

problem is to determine the phases ’H when the structure-

factor magnitudes |EH| are available. In the minimal-principle

method, the phase problem is formulated as a problem of

constrained global minimization. The minimal function of the

structure invariants, ’HK = ’H + ’K + ’�H�K, plays a critical
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Table 1
Selenium-substructure data sets used in this investigation.

Selenium sites

PDB
code Theoretical† Actual‡

Space
group

Resolution
(Å) Reference

1qcz 5 4 I422 1.50 Mathews et al. (1999)
1bx4 8 7 P21212 2.25 Mathews et al. (1998)
1cb0 9 8 P321 2.20 Appleby et al. (1999)
1t5h 10 10 P3221 2.50 Gulick et al. (2004)
1gso 13 13 P212121 2.22 Wang et al. (1998)
1jxh 14 14 P41212 2.30 Cheng et al. (2002)
1dbt 21 19 P21212 2.49 Appleby et al. (2000)
1jen 24 22 P21 2.25 Ekstrom et al. (1999)
1jc4 28 24 P21 2.00 McCarthy et al. (2001)
1cli 28 28 P212121 3.00 Li et al. (1999)
1a7a 32 30 C222 2.80 Turner et al. (1998)
1l8a 42 40 P21 2.60 Arjunan et al. (2002)
1e3m 48 45 P212121 3.00 Lamers et al. (2000)
1hi8 50 50 P32 2.80 Butcher et al. (2001)
1gkp 54 54 C2221 2.50 Abendroth et al. (2002)
1m32 66 66 P21 2.55 Chen et al. (2002)
1dq8 68 60 P21 2.33 Istvan et al. (2000)
1e2y 70 60 P21 3.20 Alphey et al. (2000)
1eq2 70 70 P21 2.91 Deacon et al. (2000)

† Potential sites based on the amino-acid sequence. ‡ Number of sites reported in the
published protein structure.



role in the phase-refinement portion of the Shake-and-Bake

cycle. Successful applications of Shake-and-Bake to structure

determination depend on the formulation of minimal func-

tions and their radius of convergence.

3.1. Cosine minimal function

Traditionally, Shake-and-Bake employs a probabilistic

based cosine minimal function (DeTitta et al., 1994),

Rð’Þ ¼
P
H;K

AHK

� ��1P
H;K

AHK cosð’HKÞ �
I1ðAHKÞ

I0ðAHKÞ

� �2

; ð2Þ

where AHK = 2N�1/2|EHEKEH+K|, N is the number of non-H

atoms (or substructure heavy-atom sites) in the asymmetric

unit and I1/I0 is the ratio of modified Bessel functions. The

cosine minimal function measures the least-squares difference

between the cosine values of the structure invariants, calcu-

lated using a set of trial phases, and the theoretically estimated

values of the same invariants. This minimal function serves as

the foundation of traditional Shake-and-Bake. Several

different types of probabilistic based minimal functions have

been proposed (Hauptman et al., 1999; Xu et al., 2002).

3.2. Statistical minimal function

A new type of minimal function, termed the statistical

minimal function (Xu & Hauptman, 2004), was formulated on

the basis of empirical observation of the distribution of the

three-phase structure invariants. Let I = [�r, r] be an arbitrary

interval, NI be the number of triplet invariants whose values

lie in I and NT be the total (fixed) number of triplet invariants.

The statistical minimal function is then simply defined as

mð’Þ ¼ 1� ðNI=NTÞ: ð3Þ

It was conjectured and subsequently experimentally

confirmed that the minimal function reaches its constrained

global minimum when all phases are equal to their true values.

The statistical minimal function serves as the foundation of a

corresponding statistical Shake-and-Bake.

Applications of both traditional and statistical Shake-and-

Bake were made to 1000 trial structures for each of the 19 test

substructures using a modified version of the computer

program SnB (Weeks & Miller, 1999). Success rates were

computed for both methods and the statistical-to-traditional

success-rate ratios are reported in the column labeled ‘Ratio’

in Table 2. Of the 19 test cases, 18 difference data sets yielded

ratios that were greater than unity and 12 ratios were greater

than 1.5. These results clearly illustrate the overall superiority

of statistical Shake-and-Bake. As a consequence of such

dramatic improvement, statistical Shake-and-Bake, along with

its default statistical interval I = [�r, r] with r = min{9.14 ln(N)

+ 55.3�, 90�} (Xu et al., 2005), will be the default refinement

method used throughout the remainder of this paper.

4. Success-rate improvement: difference data

When three wavelengths of anomalous dispersion data are

available, one has at least three choices of different ways of

determining the substructure [i.e. by using (i) peak-wave-

length anomalous difference data (PKano), (ii) dispersive

difference data (IPiso) and (iii) MAD FA data]. Success rates

obtained from statistical Shake-and-Bake using each of these

three data types for the 19 Se-atom test substructures are

listed in Table 3. Firstly, three of the peak anomalous (PKano)

data sets, 12 of the dispersive (IPiso) data sets and four of the

MAD FA data sets yielded the highest success rates (bold

numbers in Table 3). Secondly, none of the three data types

produced solutions for all 19 substructures. In fact, three

PKano data sets (1gso, 1gkp and 1e2y), four IPiso data sets
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Table 2
Overall improvement of statistical over traditional Shake-and-Bake as
measured by the statistical-to-traditional success-rate ratios for peak
anomalous difference data (PKano) or dispersive difference data (IPiso).

All of these ratios, except one, were greater than unity.

PDB code Se sites Data type Ratio

1qcz 4 PKano 2.61
1bx4 7 PKano 1.67
1cb0 8 PKano 1.26
1t5h 10 PKano 1.28
1gso 13 IPiso 1.12
1jxh 14 IPiso 1.28
1dbt 19 PKano 1.84
1jen 22 PKano 1.15
1jc4 24 PKano 1.27
1cli 28 PKano 2.04
1a7a 30 PKano 1.85
1l8a 40 PKano 2.83
1e3m 45 PKano 2.34
1hi8 50 PKano 2.00
1gkp 54 IPiso 2.00
1m32 66 PKano 1.73
1dq8 60 PKano 1.66
1e2y 70 IPiso 0.78
1eq2 70 PKano 1.62

Table 3
Comparison of success rates (%) for 1000 SnB trials using PKano, IPiso and
FA data for the 19 Se-atom substructures.

The highest success-rate values for each substructure are shown in bold.

PDB code PKano IPiso FA

1qcz 13.5 11.8 14.7
1bx4 11.3 19.9 12.4
1cb0 4.7 6.5 3.9
1t5h 4.2 6.3 3.7
1gso 0.0 13.9 6.6
1jxh 1.0 11.5 0.0
1dbt 5.1 8.2 5.8
1jen 12.0 0.0 11.9
1jc4 28.8 0.0 32.7
1cli 3.9 4.4 0.7
1a7a 4.5 1.6 5.1
1l8a 3.0 13.7 12.9
1e3m 6.8 7.0 5.7
1hi8 26.6 0.0 37.1
1gkp 0.0 2.2 0.0
1m32 4.5 28.1 2.7
1dq8 24.2 10.8 12.1
1e2y 0.0 10.2 3.5
1eq2 3.4 0.0 0.1



(1jen, 1jc4, 1hi8 and 1eq2) and two FA data sets (1jxh and

1gkp) failed to yield solutions. The possible causes of these

failures were investigated by applying statistical Shake-and-

Bake to error-free PKano data generated for 1gso, error-free

IPiso data generated for 1jc4 and error-free FA data generated

for 1jxh using the known atomic coordinates and the program

EGEN (R. Blessing, personal communication). This study

revealed that the success rates for these three error-free data

sets were 11.8, 23.7 (Xu et al., 2005) and 0.9%, respectively.

Therefore, experimental error was in fact the cause of the zero

success rates.

Since it is impossible to eliminate experimental errors

completely or to predict which difference data sets will fail to

produce solutions, it is important to devise a strategy that will

ensure that whenever solutions exist they will be found and

found as quickly as possible. Therefore, since errors in the

anomalous and dispersive data sets are likely to be indepen-

dent (in the three cases that PKano data sets failed to yield

solutions, their companion IPiso data sets produced success

rates of 13.9, 2.2 and 10.2%, respectively; in the four cases that

IPiso data sets failed to yield solutions, their companion PKano

data sets produced success rates of 12.0, 28.8, 26.6 and 3.4%,

respectively), it is a good idea to process some trials using each

type of data (PKano and IPiso) in order to produce at least one

solution in a limited number of trial structures and the latest

version of the computer program BnP has adopted this

strategy. In a single-processor environment, 500 SnB trials are

refined using the PKano data and if these trials fail to produce a

solution an additional 500 SnB trials are refined using the IPiso

data. In a multiprocessing environment, one or more inde-

pendent multi-trial SnB refinement jobs can be executed

simultaneously for both the PKano data and the IPiso data. If a

solution is detected automatically for one of these jobs (see

x6), the other SnB refinement jobs can then be terminated.

5. Cost-effectiveness improvement: using an optimal
FFT grid

One of the ways to maximize cost-effectiveness (CE) is to

reduce SnB running time, in particular the CPU time required

to complete one refinement cycle for one trial structure. SnB

cycle time consists of the times for (i) phase refinement using

the parameter-shift procedure to reduce the value of a

minimal function, (ii) fast Fourier tranformation (FFT) to

compute an electron-density map, (iii) density modification by

peak picking or low-density elimination and (iv) an inverse

FFT or structure-factor calculation to compute modified

structure factors. The FFT time for calculating an electron-

density map (the most time-consuming portion of the SnB

cycle) depends heavily on the number of points at which the

electron density is computed (i.e. on the grid size). In regular

SnB applications to Se-atom substructure determinations

(including those described in previous sections), the default

grid size has traditionally been chosen to be one third of the

data resolution (typically 1.0 Å). In this study, the effects of

various grid sizes on success rate and running time (and

therefore on cost-effectiveness) have been studied for the 19

Se-atom test substructures using statistical Shake-and-Bake.

The results clearly demonstrate that using a coarse grid

(2.0 Å) instead of a fine grid (1.0 Å) decreases success rates

only modestly while greatly decreasing the running time and

therefore significantly improves the cost-effectiveness, which

(Table 4) ranges from a factor of 2.5 (1gso and 1jc4) to more

than 10 (1jxh, 1a7a and 1eq2).

Using a coarse grid in SnB will decrease the quality of

substructure solutions, resulting in higher minimal function

(Rmin) and crystallographic R (Rcryst) values, a narrowed gap

between the Rmin values for solutions and nonsolutions and a

smaller number of accurately identified Se-atom sites. This will

make it very difficult to identify potential solutions based on

the automatic solution-detection test (x6). However, this

difficulty can be overcome by adding one additional cycle of

SnB refinement using a fine grid. The quality of the solutions,

compared on the basis of the mean phase error (MPE) and

listed in Table 5, is the same as those obtained when a fine grid

is used for all cycles.

6. Cost-effectiveness improvement: automatic solution
detection

Since Shake-and-Bake is implemented in the form of a

multiple-trial procedure, it is essential to have some means of

distinguishing the refined trial structures that are solutions

from those that are not. It is important that solutions can be

recognized quickly and automatically, that at least one solu-

tion can be identified in every case where some solutions are

present and that nonsolutions never be falsely identified as

solutions. The minimal function (Rmin) and the crystallo-

graphic R factor (Rcryst) are two figures of merit (FOMs) that
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Table 4
Effects of different Fourier grid sizes (1.0, 1.5 and 2.0 Å) on cost-
effectiveness using statistical Shake-and-Bake for the 19 Se-atom
substructures.

The highest cost-effectiveness values for an SGI R10000 workstation are
shown in bold.

Grid size (Å)

PDB code Data type 1.0 1.5 2.0

1qcz PKano 90.3 144.5 343.3
1bx4 PKano 80.4 255.4 394.1
1cb0 PKano 23.7 46.0 70.2
1t5h PKano 13.1 36.0 58.2
1gso IPiso 44.8 161.0 113.8
1jxh IPiso 15.1 75.7 244.3
1dbt PKano 5.5 22.6 22.7
1jen PKano 25.6 56.9 101.3
1jc4 PKano 61.1 130.7 156.1
1cli PKano 1.5 3.2 10.7
1a7a PKano 0.8 2.1 9.5
1l8a PKano 0.9 2.9 2.4
1e3m PKano 0.8 2.3 6.2
1hi8 PKano 3.7 8.3 15.0
1gkp IPiso 0.1 0.1 0.3
1m32 PKano 0.5 0.9 2.2
1dq8 PKano 3.6 18.7 17.1
1e2y IPiso 1.6 3.0 10.2
1eq2 PKano 0.2 0.6 2.3



are computed at the end of SnB refinement for every trial

structure and they are useful for making decisions about

whether or not a solution has been found. Typically, the

presence of a bimodal distribution of Rmin values (based on a

predetermined number of trial structures and presented in the

form of a histogram) suggests that potential solutions have

been found. The existence of solutions is confirmed by

corresponding low values of Rcryst and the trial structure with

the lowest Rmin value is then selected as the solution. Since

recognition of a biomodal histogram requires numerous trial

structures and manual intervention, it is not suitable for

automated applications.

Although the relative values of each FOM for any given

substructure clearly distiguish solutions from nonsolutions, the

exact range of FOM values for both solutions and nonsolu-

tions varies from structure to structure. It is often the case that

the value of an FOM for a nonsolution of a small substructure

is less than that for a solution of a large substructure. This

makes it impossible to specify a single cutoff value for each

FOM that will discriminate solutions from nonsolutions for all

structures or all substructures. However, for any given

substructure it is observed that the values of each FOM for

solutions are significantly lower than those for nonsolutions

and no solution with a value of Rcryst � 0.33 has ever been

observed. Therefore, let Rj denote the FOM for the jth trial

structure, 1 � j � T, where T is the total number of SnB trial

structures. Dynamic average values of Rmin and its standard

deviation can then be designed to detect automatically

whether or not a solution is present among the completed trial

structures. For example, if a solution has not been detected

after m SnB trial structures (nonsolution sample m � 5), the

average values of an FOM, Rm = ð1=mÞ
Pm

j¼1 Rj, and its stan-

dard deviation, �m = ½1=ðm� 1Þ�
Pm

j¼1ðRj � RmÞ
2
�
1=2, are

calculated and the next SnB trial structure is subject to the

following solution test. If Rm+1 < Rm � 3�m, then the (m + 1)th

trial structure is a solution; otherwise, repeat the procedure

replacing m by m + 1. Of course, in order to detect an early

occurrence of a solution, the identity of the trial structure with

the smallest Rmin value among the SnB trial structures having

Rcryst values less than 0.33 is tracked and automatically

subjected to the solution test when the nonsolution (Rcryst �

0.33) sample equals 5. When the solution test was applied to

all test structures in Table 1, the first solution of every struc-

ture having at least one solution was identified correctly.

7. Conclusions

Four methods of improving Shake-and-Bake substructure

determination have been proposed and tested on 19 Se-atom

examples. These methods include (i) a new statistical minimal

function that increases the percentage of trial structures that

go to solution, (ii) a method for circumventing measurement

errors in MAD data by using peak anomalous and dispersive

difference data independently, (iii) minimizing computational

time by using an optimum Fourier grid size for the density-

modification step in the SnB cycle and (iv) an effective

procedure for detecting solutions as soon as possible. These

improvements have been implemented in the latest version of

the computer program BnP, which can be downloaded from

the web site http://www.hwi.buffalo.edu/BnP/. The use of the

statistical minimal function and the optimum Fourier grid size

result in more than a 40-fold reduction in the computing time

required to solve the 160-site selenomethionine substructure

of Escherichia coli ketopantoate hydroxymethyltransferase

(KPHMT). The KPHMT substructure was first solved using an

older version of SnB (von Delft et al., 2003).

This research was supported by NIH grants EB002057 and

GM072023. We thank everyone who made his or her SeMet

MAD data available to us as test data.
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